UT Dallas team believes integrated circuit technology will make electronic noses affordable for healthcare applications
Affordable electronic noses developed for health diagnoses could be made a reality thanks to integrated circuit technology found in smartphones.
Researchers at the Texas Analog Center of Excellence (TxACE) at UT Dallas are working to develop an affordable electronic nose, a device which can be used in breath analysis for a wide range of health diagnosis.
Breaths contain gases from the stomach and that come out of blood when it comes into contact with air in the lungs. The breath test is a blood test without taking blood samples that contains information about practically every part of a human body.
While devices that can conduct breath analysis using compound semiconductors exist, they are bulky and too costly for commercial use, said Dr. Kenneth O, one of the principal investigators of the effort and director of TxACE. The researchers determined that using complementary metal-oxide semiconductor (CMOS) integrated circuits technology will make the electronic nose more affordable.
CMOS is the integrated circuits technology used to manufacture the bulk of electronics that have made smartphones, tablets and other devices possible.
“Smell is one of the senses of humans and animals, and there have been many efforts to build an electronic nose,” said Dr. Navneet Sharma, the lead author of the paper. “We have demonstrated that you can build an affordable electronic nose that can sense many different kinds of smells. When you’re smelling something, you are detecting chemical molecules in the air. Similarly, an electronic nose detects chemical compounds using rotational spectroscopy.”
The rotational spectrometer generates and transmits electromagnetic waves over a wide range of frequencies, and analyses how the waves are attenuated (how the strength in wave signal is reduced) to determine what chemicals are present as well as their concentrations in a sample. The system can detect low levels of chemicals present in human breath.
The researchers said that the electronic nose can detect gas molecules with more specificity and sensitivity than current methods used such as breathalysers, which can confuse acetone for ethanol in the breath. The distinction is important, for example, for patients with Type 1 diabetes who have high concentrations of acetone in their breath.
“If you think about the industry around sensors that emulate our senses, it’s huge,” said Dr. O. “Imaging applications, hearing devices, touch sensors — what we are talking about here is developing a device that imitates another one of our sensing modalities and making it affordable and widely available. The possible use of the electronic nose is almost limitless. Think about how we use smell in our daily lives.”
The UT Dallas team envision the CMOS-based device will first be used in industrial settings and then in doctors’ offices and hospitals. As the technology matures, they could even become household devices. Dr. O said the need for blood work and gastrointestinal tests could be reduced, and diseases could be detected earlier, lowering the costs of health care.
The researchers are working toward construction of a prototype programmable electronic nose that can be made available for beta testing in early 2018.
TxACE and this work are supported in large part by the Semiconductor Research Corporation (SRC) and Texas Instruments Inc. Additional support was provided by Samsung Global Research Outreach.